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1. INTRODUCTION 

The results obtained in [l] regarding the upper bounds for the Hausdorff dimension of attractors have 
stimulated the introduction of a new dimensional characteristic of invariant sets of dynamical systems 
- the Lyapunov dimension (LD) [2-71. In the numerical analysis of many specific dynamical systems 
with chaotic behaviour, the LD, being an upper bound for the Hausdorff dimension, frequently turns 
out to be close to the Hausdorff dimension [2]. It has recently been ascertained that the fractal dimension 
also has an upper bound defined by the LD [8,9]. Thus, having been defined in terms of the Lyapunov 
exponents, the concept of the LD is a connecting link between the classical theory of the stability of 
motion and the modern theory of dimensions for the attractors of dynamical systems. 

In this paper frequency methods of analysing non-linear systems, developed primarily in the context 
of control theory [lO-123, are used to find bounds for the LD of attractors. These bounds are used most 
effectively in combination with theorems stating that attractors are localized in a certain part of phase 
space. This approach is demonstrated here for the well-known Lorenz system, which is a three-mode 
model of two-dimensional convection [2, 131. The localization bounds derived here for the global 
attractors of the Lorenz system are in many cases the asymptotically best possible. The dimension of 
these bounds with respect to the parameters has enabled asymptotic integration formulae to be used 
to prove the existence of homoclinic orbits. 

We recall here a few definitions for the system 

dxldr = fdx), x E R” (1.1) 

where f(x) is a smooth vector function and R” is Euclidean n-space. 

Definition 1. We shall say that a set K C R” is invariant if, for any point x0 E K, it is true that 
x(t,xo) E K, Vt E (--, +-). 

Definition 2. We shall say that a set K C R” isglobal& attracting if, for any solutionx(t,xo) of system (1.1) 

where 1.1 is the Euclidean norm in R”. 

Definition 3. We shall say that the set K is uniformb globally attractin 
any number E > 0, a number z(B, E) > 0 exists such thatx(t,xo) E KE 9 

if, for any sphere B C R” and 
t 5 z(B, E), kfxo E B, where K, 

is the E-neighbourhood of the set K. 

Definition 4. A globally attracting bounded invariant set K is said to be aglobaf attractor of system (1.1). 

Definition 5. A uniformly globally attracting bounded invariant set K is said to be a global B-attractor 
of system (1.1). 
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Let F,z denote the operator of displacement along trajectories of system (1.1) 

F,.? = x(r. 2). x(0, z) = z 

It is well known that the matrix 

x(t, z) = a~; /aZ, x(0, Z) = I 

is a fundamental matrix of the linear system 

dyldt = aflax Ix=xcr.zj Y (1.2) 

where SflsX is the Jacobian of the vector functionf(x) at the point x. 
Let a,(r, z) 2 . . . 2 a,(t, z) denote the singular numbers of the matrix X(t, z). We recall that a singular 

number aj(t, z) of the matrix X(t, z) is defined as the square root of the corresponding eigenvalue 
pj(t, z) of the matrixX(t, z)*X(t, z), where ol(t, Z) 2 . . . 2 p,(t, z) and the asterisk denotes transposition 
in the real case and Hermitian conjugation in the complex case. 

Let oj(t, z) denote the product of the singular numbers 

wi(f, Z) = a,& z> . . . a,& z> 

We successively introduce the following notation 

it is obvious that 

(1.3) 

Let SUP~~K 144 > 0 and let d E [l, at - l] be the least integer such that 

Md+,(z) < 0, Vz E K (1.4) 

Henceforth, we will consider sets K such that inequality (1.4) holds for some d E [l, n - 11. In that 
case it follows from inequalities (1.3) that the following definition is correct. 

Definition 6. The number 

dimL K = d +sup(M,Az)/ I~~+~(z)l) 
ZEK 

is known as the Lyapunov dimension dimLK of the set K. 

2. FREQUENCY ESTIMATES OF THE LYAPUNOV DIMENSION 
OF INVARIANT SETS 

To estimate dimLK for invariant sets of non-linear systems (l.l), we need estimates of the singular 
numbers al(t) 2 . . . 3 an(t) of the fundamental matrix Y(t) (Y(0) = I) of the linear system 

dyldt = A(t)y, y E R” (2.1) 

where A(t) is a continuous n x n matrix. 
Let u,(t), . . . , un(f) be an orthonormal system of eigenvectors of the matrix Y(t)*Y(t) such that 

Y(t)* Y(r)u,tr) = a#*i#) 
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We recall that the linear operator Y(t) maps the orthonormal system u,(t), . . . , u,(t) into an orthogonal 
system and 1 Y(t)u(t) 1 = Uej(t) 

Let us consider some linear k-dimensional subspace Lk C R” and a non-negative function 

cp(t). 

Lemma 1. Suppose, for some vector v E Lk, we have an estimate 

Then q(t) 2 q(t). 

Proof. Fix the parameter t and choose a non-zero vector v E Lk such that V*li(‘) = 0 Vj = 1, . . . , 
k - 1. It follows that u admits of the following expansion in terms of the basis ul(t), . . . , u,(t) 

u = i Piujt,t)+ Pj E R’ 
j=k 

USing this equality, the orthonormality of Uj(t) and the assumption of the lemma, we obtain 

(p(f)2 Iu 12sl Y(r)u I’= i Pfaj(f12 saa,(f12 lu I2 
j=k 

Let H be a symmetric matrix which has at least k negative eigenvalues; consider the quadratic form 
V(X) = x*Hx and the set Q = {xIx*Hx < 0). 

Lemma 2. Let us assume that for some function h(t) and any vector z E S2 

z’HA(r)z + hjr)z*Hz c 0, b’t 2 0 (2.2) 
Then a positive number p exists such that 

Proof. We write inequality (2.2) in the form 

Vt 3 0; E(t) = exp 
( 1 

-j h(7)& 
0 

(2.3) 

Hence it follows that 

From this inequality and the bounds on the spectrum of the matrix H we deduce the existence of a k-dimensional 
linear subspace Lk and a number p such that 

t# 3 Pb@)E(f), VY (0) E Lk 

By Lemma 1, this estimate implies inequality (2.3). 

Now let M be a symmetric matrix which has at least x positive eigenvalues; consider the quadratic 
form W(x) = x*Mx and the set Q = {xIx*Mx > 0). 

Lemma 3. Let us assume that for some function y(t) and any vector z E CD., 

z*A(fk + ~0k’Mz c 0. vt a 0 (2.4) 

Then a positive number C exists such that 
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,Proof. Consider the system 

f = -A(f)*z 

and the fundamental matrix Z(t) of the system satisfying the initial condition Z(0) = I. It is well known that [14] 

Z(f)‘Z(f) = (Y(r)'Y(r))-' 

Consequently, vi(t) = o,++r(t)-‘, where v(t) are the singular numbers of the matrixZ(t), so that yr(t) 2 . . a y,,(t). 
We introduce the notation 

H =-M, i(r) =-v(f), Ao(t) =-A(t)*, C = p-’ 

Then condition (2.4) takes the form (2.2) with the matrix A(0) = Ao(t). 
Using Lemma 2, we obtain inequality (2.5). 

Let us consider system (2.1) with a matrix A(t) = A + Bu(t), where A is a constant n x it matrix, B 
is a constant n x m matrix and U(t) is a continuous m x n matrix. 

Now consider a Hermitian form Fk(z, 5) of complex vector variables z E Cn, 5 E Cm (k = 1, . . . , n) 
Let us assume that an n x m matrix Qk and a positive number E exist such that 

We also assume that 

F&,Q;x)~lQ;x1*, VXER” (2.6) 

Fk(x, U(r)x) 20, VX E R”, V’r 3 0 (2.7) 

Lemma 4. Suppose the pair (A, B) is completely controllable, the pairs (A, Qk) are completely 
observable and, for some sequence of numbers ht < . . . c A,, the following conditions are satisfied: 

1) The matrices A + BQZ + hkI have at least k eigenvalues with positive real parts. 
2) For all k = 1, . . . , n and all w E R’ 

Fk([(iW-ht)l-A]-‘BE,5) SO, VIE Cm (2.8) 

Then if ok(t) are the singular numbers of the fundamental matrix of system (2.1), numbers pk > 0 
exist such that 

ok(f) 3 j& exp(-&r), Vf L 0, k =I ,. . . , n (2.9) 

We recall that a pair (A, B) is said to be completely controllable if the rank of the matrix (B,M?, . . . , 
A”-‘B) is n. A pair (A, Q) . IS said to be completely observable if the pair (A *, Q) is completely controllable. 

Proof. It follows from Condition 2 of the lemma that, by the Yakubovich-Kalman Lemma, a symmetric matrix 
Hk exists for which the following inequality holds 

2z*H,[(A+~,l)z+B~]+Fk(z,&~0, VZER”, VT;cRm 

Putting 5 = Qiz in this inequality and using inequality (2.6), we obtain 

(2.10) 

~z*H,(A+~~I+BQ,*)z~-EIQ,‘zI’. V’IER” 

This inequality and Condition 1 of the lemma imply that the matrix Hk has at least k negative eigenvalues (11, 121. 
It follows from condition (2.7) and inequality (2.10) that the function V&) = y*Hky and any solution y(t) of 

system (1.2) will satisfy the relations 

~~(y(r))+2;h,V,(y(t))= 2y(r)‘H~I(A+h~l)y(r)+BU(f)~(~)l+ 

+Fk (y(t). U(r)y(r)) - Fk (y(t). Wy(0) C 0. ‘jr a 0 

By Lemma 2, this implies the estimate (2.9). 

(2.11) 

Lemma 5. Let Condition 1 in the statement of Lemma 4 be replaced by the following: the matrices 
A + BQk + &I have k or more eigenvalues with negative real parts. 
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Then, if ok(t) are the singular numbers of the fundamental matrix of system (2.1), numbers fik > 0 
exist such that 

9-k+ I 0) c Pk exp(-Q). Vt 2 0, k = l,.. ., n (2.12) 

The proof is analogous to that of Lemma 4, except that Lemma 3 is used instead of Lemma 2. 
Now consider the system 

dxldt = Ax + B&x), x E R” (2.13) 

where A and B are constant n x II and n x m matrices, and g(x) is a continuously differentiable vector 
function. 

Let K be a bounded set, invariant with respect to system (2.13), whose elements satisfy the estimate: 

Y(x)+GF-yyo, Vx E K; y(x) = tr(A + B&$x) (2.14) 

where &g/&x is the Jacobian of the vector function g(x) at the point x, yo is a certain positive number 
and v(x) is some function, continuously differentiable in Rn, such that 

v’(x) =(Ax+ Bg(x))* gradu(x) 

We will also assume here that inequalities (2.6) hold for certain Hermitian forms Fk(z, 5) and matrices 
Qk. Instead of inequalities (2.7), we will assume here that 

F,(y, (&lax)y)==O, VEER”, VXE K (2.15) 

Theorem 1. Let the pair (A, B) be completely controllable and the pairs (A, Qk) completely observable 
and suppose Conditions 1 and 2 of Lemma 4 hold for some sequence of positive numbers hi < . . . G A,,. 

Suppose for some natural number m and numbers E [0, l] 

-Yo + (I- S&m+, + AZ+* <O for m<n-I; A:= 2 h, 
j=m (2.16) 

- YO + t1 -s)hm+l <O for m=n-I 

Then 

diq.Ksm+s (2.17) 

Proof. Consider the case m < n - 1. We will first show that 

M,+,(z) < 0, Vz E K (2.18) 

To do this, we use the relations 

%(bz) = expi y(x(z,z)W = expj (y(x(z,z))+ti(x(Z,t)))dz 
3 

ew(z) s 

0 0 ev(-W,z)) 

s Cexp(-y,r), C = sup expu (x)1 mf expu (z) 
xeK 

urn+1 (tv 2) = CO&, z)am+2(t, z)-’ . . . an(r, z)-’ 

Hence it follows, by Lemma 4, that 

o,,, (t,z) C C fi p7’ exp[(-y. + A~+2)tl, Vt 2 0 (2.19) 
j=m+l 

Taking into account that the numbers Aj are positive, we deduce from this inequality and from condition 
(2.16) that a positive number E exists for which 

o,,, 0,~) s C fi PI’ exp(-et) 
j=m+2 

(2.20) 
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Since 

M,+,(z)=,~~~lno,+,(r,z) 
estimate (2.18) follows from inequality (2.20). 

As remarked earlier, inequality (2.18) also implies the estimate 

PL,+I (z) < 0, Vz E K 

Consider the identity 

We write estimate (2.19) with the substitution m + m - 1: 

o,(r,z)d C fi j3J’ exp[(-y0 + AL+,)t], Vt b 0 
j=m+l 

We deduce from identity (2.21) and from estimates (2.19) and (2.22) that 

(2.21) 

(2.22) 

Hence, from inequality (2.16) and the fact that uU,+i (z) is negative, we obtain the estimate 

ss M,(z) 

Ih+,(Z)I’ 
VZEK (2.23) 

In the case sup&f&z) < 0, it follows directly from the definition of Lyapunov dimension that dim,(K) 
G m, which proves the theorem. In the case supK M,,(z) 2 0, estimate (2.17) follows from inequality 
(2.23). 

The treatment of the case m = n - 1 is similar, except that instead of inequality (2.19) we need only 
write the estimate 

o,+~ (1. z) c C expkY0Q 

Theorem 2. Let the pair (A, B) be completely controllable and the pairs (A, Qk) completely observable. 
Suppose Conditions 1 and 2 of Lemma 5 hold for some sequence of numbers hi 2 . . . 2 A,. 

Let us assume that the following inequalities hold for some natural number m E [l, n - l] and some 
s E [O, 11 

Then estimate (2.17) holds. 

A,_, > 0, A?-,+, + sh,_, > 0 (2.24) 

Proof. We will first show that inequality (2.18) holds. To do this we note that the fact that A,,_,,, is 
positive and the truth of inequality (2.24) imply the estimate I$-,,, > 0. It follows from estimate (2.12) 
that 

co,,,,, (t, z) s fI Pj expG4,A 
n-m 

(2.25) 

This at once implies inequality (2.18). 
It is also clear that 

q,,(t.z) c ,_fI+pi exp(-AL,++) (2.26) 
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Estimate (2.23) follows from identity (2.21) and inequalities (2.25) and (2.26). The rest of the 
proof of Theorem 2 is exactly the same as the corresponding reasoning employed in the proof of 
Theorem 1. 

3. LOCALIZATION BOUNDS FOR GLOBAL ATTRACTORS 
OF THE LORENZ SYSTEM 

Consider the Lorenz system 

ic = -d(X - Y), Y=rx-y-xz, Z=-bZ+XY (3.1) 

where d, r and b are positive numbers. Suppose, in addition, that r > 1 and 2d > b. Note that if one of 
these conditions fails to hold, system (3.1) will be globally asymptotically stable [ll, 151, that is, any of 
its solutions will tend to some equilibrium state as t + + 00. 

Together with system (3.1) we will consider the equivalent system 

where 

(3.2) 

(p(a) = -0 + “p3. +$ q=E*(Y-x)Jz, l+&* z-5 ( 1 
t&J E(d+l) 

t=J-----, p= & . a=$=, &=(r-I) -x 
E 

It is well known [ll, 12, 151 that the surfaces 

w, =((r-Z)*+Y*=M*+p) and v, =(Z-X21(2d)=-p} 

where p > 0 and 

M= r 
1 

for t7G 2 

br/(22/6-1) for b L 2 

are contact-free for solutions of system (3.1). Hence the following inequalities hold on a global attractor 
of system (3.1) 

(r-Z)* + Y* S Mz (3.3) 

Z a X?/(2d) 
(3.4) 

Hence it follows that the following inequalities hold on a global attractor of system (3.2) 

J;To 4% -4&,-~-=&(L)-Jz 
5 >+0*/2 for 0750 

Using estimate (3.4), we introduce the comparison system [15, 161 

ir=n, i-t=-pn+o-03 

which is equivalent to the first-order equation 

(3.5) 

(3.6) 

(3.7) 
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PdP -+~P-.o+03=o 
do (3.8) 

The solutions P,(o) of this equation with initial data PI(oO) = 0, which are positive on the set [O, CQ], 
define the foilowing contact-free surfaces of system (3.2) in the half-space {CT 2 0) 

ltl=P,(cF), rl>o* CsE lO,cr,ll (3.9) 

(?l co, a=oof (3.10) 

The solutions Pz(o) of this equation with initial data Pz(oo) = 0, which are negative on the set 
(-qo, 0), define the following contact-free surfaces of system (3.2) in the half-space {CF c 0) 

(3.11) 

lrl>O, o=-G*l (3.12) 

By estimate (3.5), it therefore follows that if the graph of P = P,(o) cuts the graph of the straight line 

-Go 

p=7$ii-J;lf 

at some point o1 of the interval (0, GO), the following inequalities hold on a global attractor K of system 

(3.2) 

G < cr0, 7j < P,(o) for cr G [CF, , a01 (3.13) 

Similarly, if the graph of P = Pz(a) cuts the graph of the straight line 

J;i;z 
p=-Ji(Y-l) - $7 

at some point o2 in the interval (-oO, 0) the following inequalities hold on a global attractor Kof system 

(3.2) 

CF>-CF,, rj> pZ(o) for cf EL-CQ, 02] (3.14) 

Note that in the strip { 1 a/ =S oo} the surfaces (5 = C - po2/2. C > @$2) are contact-free for system 
(3.2). Hence the following estimate holds on a global attractor of system (3.2) 

5~~P(c75-cJ2)/2 (3.15) 

We have thus proved the following result. 

Theorem 3. Estimates (3.3)-(3.6), (3.13)-(3.15) hold on a global attractor of system (3.1). 
A similar result also holds for a global B-attractor of system (3.2). 
We present one simple estimate of the number oo. To do this we note that, for inequalities (3.13) to 

hold, it is sufficient that the graphs P = PI(o) should intersect the straight line P = M/(~(r-1)). 
Since the number p in Eq. (3.8) is positive, we have 

pi(o)2 > (02 - 0;) 

Therefore, a sufficient condition for the above intersection to take place is that 

(I-& 
M2 -$I _gJ>=_ 

2(r - 1)’ 
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This inequality implies that 

(3.16) 

Similar reasoning may also be applied to estimate (3.14). 
It follows from (3.16) that any global attractor of system (3.2) lies in a domain which is bounded 

uniformly with respect to the parameter r E (1, + -). For global B-attractors in the case b s 2, estimates 
(3.9, (3.13) and (3.14) are asymptotically the best possible as r + +m. Indeed, in that case, as 
r + +w the following inequalities hold on a B-attractor 

We recall that part of a B-attractor consists of unstable manifolds of the zero equilibrium state, which 
may be represented in the zeroth approximation (for small E) by the formulae 

(5=-p&2, I$ =a*--0’/2) 

Hence for large r a B-attractor has points close to the planes { 1 CT 1 = 31, { 1 q 1 = l/a). 

4. BOUNDS FOR THE LYAPUNOV DIMENSION OF 
AN ATTRACTOR OF THE LORENZ SYSTEM 

We will now apply the Frequency Theorem (Theorem 1) and Localization Theorem (Theorem, 3) to 
system (3.1). 

We write system (3.1) in the form of (2.13), where 

We construct an Hermitian form as follows: 

F,(t, 5,=~,Z:,+52z3+slt2+5223+ 

+M(x I z, I* +x--I I z2 I* +x-I I Z3 I*) 

where 4 and zi are the components of the vectors 5 and z, and M and x are certain positive parameters 
to be determined later. 

In the case under consideration, inequality (2.15) takes the form 

2[(r - Z)y2 + Vy3 Iy, + M(x I YI I* + x-’ 1~2 I* + x-’ 1~3 I* 13 0 

Vyj ER’. j=l, 2, 3 

This inequality will hold if 

(r-Z)*+Y*s M* 

This inequality is identical with estimate (3.3). 
In the case under consideration, . 

[pl-A]-‘B= 

d 

tp+dltp+ 1) ‘I 

-k 
P+l 

42 
p+b 

p Q c’ .” 
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Consequently, condition (2.8) becomes 

2(h, 1) a x-‘M + xd2M /(h, -d)* 

2(h, -b) 2 x-‘M 

Taking k = 3, x = d-‘(hs - d), we write inequality (2.16) in the form 

31,(1-s)<d+b+l 

Hence, Theorem 1 implies the following. 

Corollay 1. If d 2 b - 2 and for some s E [0, l] 

(=-1)(=-d)> Md 

then dimL K s 2 + s. 
This inequality was established previously [5], subject to the additional condition that 1 c b c d. 

5. THE EXISTENCE OF HOMOCLINIC ORBITS 
IN THE LORENZ SYSTEM 

Let o(t)+, c(t)+, rl(t)’ denote the separatrix of the saddle point o = 5 = TJ = 0 that goes into the half- 
plane {o > 01, that is, a solution of system (3.2) such that 

lim c(f)+ = ,ljy k(t)+ = lim n(t)+ =0 
,--f--00 I-+--m 

and o(t)+ > 0 for t E ( -, T), where T is a real number or +w. It is well known [15-171 that if the 
parameters d and b are fixed and the parameter r is sufficiently close to unity, then T = +oo. 

Definition 7. If 

lim o(t)+ = lim c(r)+ = lim q(t)+ =0 
I_+” ,-++= I-++- 

then the trajectory o(t)+, c(r)‘, r(t)’ will be called a homoclinic orbit. 
Let us consider a smooth path b(s), d(s), r(s) (s E [0, 11) in the parameter space {b, d, r}. 
The main result of this section is the following. 

Theorem 4. Suppose for system (3.2) with parameters b(O), d(O), r(0) numbers T > z exist such 
that 

o(T)+ = T(T)’ = 0 (5.1) 

o(t)+ > 0, V’t c T (54 

q(t)+#O, V’t<T, rf~ 

Assume in addition that for system (3.2) with parameters b(l), d( 1) and r(1) 

(5.3) 

o(t)+ >o. vt E(--m, +m) (5.4) 

Then a number so E [0, l] exists such that system (3.2) with parameters b(so), d(so) and r(so) has a 
homoclinic orbit o(t)‘, q(t)‘, c(t)‘. 

For the proof of this proposition, we need the following lemmas. 

Lemma 6. If the following conditions hold for system (3.2) 
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q(s)’ = 0, q(t)” >o, vt E i-9 2) 

then q(r)+ < Cl. 

Proof. Suppose the contrary, i.e. q(s)+ = 0. Then it follows from the last two equations of system (3.2) 
that 

ii(r)+ = ac(r)+o(T)+ (5.5) 

It follows from the relations n(t)+ > 0, o(t)+ > 0, Vt E ( -, r) and from the last equation of system (3.2) that 
c(r)+ -C 0, W E (-, r). This inequali~ and (5.5) imply the inequaii~~(~)’ < 0. But this ~ntradi~ts the assumption 
q(r)+ = 0 and the conditions of the lemma, proving Lemma 6. 

Lemma 7. Given system (3.2), suppose that relations (5.1) and (5.2) are true and moreover 

Then inequality (5.3) also holds. 

rl(f)’ >o, vt E (--* 7) 

(5.6) 
n(t)+ s 0, vr E (7, T) 

Proof. Supposing the contrary, we conclude that a number p E (z, 7’) exists such that 

n(p)+ = iI( = 0 

ii(p)+ = adp)+Q)+ CO 

q(t)+ co, vr E (p. T) 

Hence, from conditions (5.1) and (5.2) and the fact that the trajectory o(t) = q(t) = 0, c(t) = ?$O)exp(-a8) 
belongs to the stable manifold of the saddle point CT = n = 5 = 0, we infer that the separatrix 
a(t)+, n(r)‘, c(t)’ intersects this stabte manifold. But then the separatrix must be a subset of the stable 
manifold of the saddle point. At the same time, we have o(t)+ > 0, Vt 2 p. This contradicts condition (Cl), proving 
Lemma 7. 

The proof of Lemma 7 admits of the following geometric interpretation in the phase space 
with coordinates o, q, 5. Situated “beneath” the set {o > 0, ?J = 0, 5 G 1 - yo’) is a piece of the 
do-dimensional stable manifold of the saddle point o = ?l = e= 0. This prevents trajectories with 
initial data in that set from reaching the plane {o = 0) while still in the quadrant {o 2 0, 
rl GO}. 

Consider a polynomial 

p3 + ap2 + bp + c (5.7) 

where a, b and c are positive numbers. 

Lemma 8. Either all zeros of the polynomial (5.7) have negative real parts, or two of them have zero 
imaginary parts. 

Proof. It is well known [14] that all the zeros of the polynomial (5.7) have negative real parts if and 
only if ab > c. If ab = c, the polynomial has two pure imaginary zeros. 

Now let us assume that for some a, b and c with ab < c polynomial (5.7) has only real zeros. Since 
the coefficients are positive, it follows that these zeros are negative. This leads to the inequality 
ab > c, which contradicts the above statement. 

Proofof Theorem 4. It is known [18] that the semi-trajectory {o(t)+, q(t)‘, <(,(t)+ ]t E (--, ~$1 depends 
continuously on the parameter s (ta is an arbitrary fixed number). If follows from this and from 
Lemma 6 that, if conditions (5.1)-(5.3) hold for system (3.2) with parameters b(s,), d(sl) and I, then 
they also hold for b(s), A(s) and r(s), provided that s E (si - 6, s1 + S), where 6 is some sufficiently small 
number, and the numbers r and T depend on the parameters. 
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It follows from the above arguments that relations (5.1)-(5.3) hold in some interval (0,~~). Henceforth 
we will assume that (0, ss) is the maximum interval in which these relations hold. 

We claim that the values of the parameters b(sa), d&J, r(sg) determine a homoclinic orbit. 
We first note that for these parameters and some value of z 

q(r)+ > 0, v’r < 2, q(r)+ s 0, vr 2 T 

(5(f)+ > 0. vt E (-, +m) 

Indeed, if numbers T2 > T, > t exist for which 

O(f)’ >o. Vf E (-0, T2); (T(T2)+ =o. q(T)+ >o 

q(f)+ z-0, vr < T; q(r)+ =o, $r)+ co 
then for values s c so sufficiently close to so, the inequality n( T,)’ > 0 still holds. This contradicts the definition of 
the number so. 

If numbers Ti > T exist such that 

q(T)+ =o, e(r)+ co. o(f)+ >o, Vf E(-=, +m) 

then again, for s c SO sufficiently close to SO, the inequality n(T,)+ > 0 still holds, which contradicts the definition 
of the number so. 

If numbers T > z exist such that 

o(f)+ >o. vr < T, om+ -0, q(r)’ >o. Vr < ‘I 

q(r)+ c 0. VI E[T. rJ 

then, by Lemma 7, inequality (5.3) holds. Consequently, relations (5.1)-(5.3) hold for s = so, and (0, so) is not the 
maximum interval in which they hold. 

These contradictions complete the proof of inequalities (5.8). 

It follows from (5.8) that the o-limit set of the trajectory o(t)+, q(f)+, c(t)’ at s = so is necessarily 
an equilibrium state. 

We will show that the equilibrium state cr = 14, rl = 5 = 0 cannot be an o-limit point of the trajectory 
in question. 

Linearizing in the neighbourhood of this equilibrium state, we obtain the following characteristic 
polynomial 

p3 +(ct+p)p2+(ap+2/y)p+2a 

Let us assume that when s = so the w-limit set of the separatrix o(t)+, n(t)+, c(t)’ contains the 
point (5 = 1 fi, rl = 5 = 0. Using Lemma 8 and the fact that the semi-trajectory {o(t)+, r(t)‘, k(r)’ 
It E (-9 to)} is a continuous function of the parameter s, we conclude that for s close to so the 
separatrices a(t)+, rl(t)+, c(t)+ either tend to the equilibrium state CT = 1 4, ?J = 5 = 0 at f + -I-, or 
oscillate in some time interval with changing sign of the coordinate rl. Both these possibilities contradict 
properties (5.1)-(5.3). 

Hence, for system (3.2) with parameters b(so), d(sa), T(Q), the trajectory a(t)+, -q(t)‘, c(t)’ tends to 
the zero equilibrium state as t + +w. 

Note that the proof of Theorem 2 actually yields a stronger result, which may be formulated as follows. 
If relations (5.1)-(5.3) hold for s E [0, so], but not for s = so, then system (1.2) with parameters b(so), 

d(so), T(Q) has a homoclinic orbit. 
Let us apply Theorem 4 in various specific cases. 
Fix the numbers b and d. It is well known [15-171 that inequality (5.4) is true for values of r sufficiently 

close to unity. We will show that if 

3d-2b> 1 (5.9) 
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and r is sufficiently large, then relations (5.1)-(5.3) will hold. Indeed, consider the system 

(5.10) 

which is equivalent to system (3.2) in the sets {o 3 0, q > 0) and {o 3 0, q c 01, where P and Q are 
solutions of system (5.10) which are functions of CT. 

Since Theorem 3 implies that the quantities a(t)+, q(i)‘, e(t)+ are bounded uniformly with respect 
to the parameter r, we can carry out an asymptotic integration of the solutions of system (5.10) with a 
small parameter E that correspond to the separatrix under consideration. In the first approximation, 
these solutions may be written in the form 

&a) = cr* O4 - 2 -3.4; crRuda-2afly cr(l - Ru)do 
0 0 

Q(cO~O, e(o)=- t o*+ap(l-I?,) 0 

Qz(o)~O. Q(o)=- t o*+ap(I+R,); 
0 

It follows from these formulae that, if inequality (5.9) holds, then for some T > r relations (5.1)-(5.3) 
will also hold, and at the same time 

S(T)+ = e(O) =2ap 

q(T)+ =Q~(0)=-,/~=-,/8~(3d-26-1)/(3$j 

Thus, all the conditions of Theorem 4 hold for the special path b(s) = b, d(s) = d, r(s) : r(O) = rl, r( 1) = 
r2, where rl is sufficiently large and r2 is fairly close to unity. We may therefore formulate the following result. 

Corollary 2. For any positive numbers b and d satisfying inequality (5.9), a number I E (1, +-) exists 
such that system (3.2) with these parameters b, d and r has a homoclinic orbit o(t)+, n(t)+, c(t)‘. 

This result was first obtained in [19] and discussed later in 120-231. 
Now fix d = 10 and r = 28, and consider the parameter b E (0, +m). It is well known [23] that when 

b>(3d- I)/2 

condition (5.4) is satisfied. To analyse system (3.2) for small b, we reduce it to the form 

tr=Tl 

i = -~n-ucr+o-cr3 

li = -au + &[(2d - b)l &?]cf* 

(5.11) 

where u = 5 f po*/2. 
Since the semi-trajectory {o(t)‘, r@)+, c(t)’ ]t E (--, to)} depends continuously on the parameter 

b, it follows that, when b is small, system (5.11) may be replaced by the following “limiting” equations 

?j= --E[(d+I)/&]q-m+cvts3 

ic = 2&J&r’ 

(5.12) 
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Numerical integration of the solution o(t)+, q(t)+, c(t)’ of system (5.12) ford = 10, r = 28 shows that 
conditions (5.1)-(5.3) are satisfied. 

Hence, the above arguments, using Theorem 4, yield the following 

Corollary 3. Let d = 10 and I = 28. Positive number b0 exists such that system (3.2) with parameters 
b = bO, d = 10 and r = 28 has a homoclinic orbit o(t)+, q(t)‘, t(t)+. 
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